

INDIVIDUAL ASSIGNMENT

FOR

Object Oriented Methods with UML (CX006-3-3-OMU)

Group 1 - Banking System

By

Adrien Poupa

TP040869

INTAKE: UCFEFREI1603

DUE DATE: 25th May 2016

ONLINE REPOSITORY: https://github.com/AdrienPoupa/banking-system

NAME OF LECTURER: MRS BAZILA BANU

https://github.com/AdrienPoupa/banking-system

Adrien Poupa TP040869 Object Oriented Methods with UML

2

Table of contents

Use case diagram Page 3

Use cases Page 4

Class diagram Page 6

Sequence diagrams Page 7

Activity diagrams Page 11

Implementation Page 15

Appraisal Page 17

Appendix Page 20

Adrien Poupa TP040869 Object Oriented Methods with UML

3

Use case diagram

Adrien Poupa TP040869 Object Oriented Methods with UML

4

Use cases

Use case 1 Consultation of the expense history

Pre-condition User is logged in

Post-condition Display the expense history

Main success scenario 1 – The user enters expense

2 – The user knows his expense history

Alternate flow 1 – User wants to display an account that does not exist:

display “This account does not exist”

2 – User does not have the rights to consult his account:

display “You can’t access this account”

Use case 2 Order a checkbook

Pre-condition User is logged in

Post-condition Inform the user his checkbook has been ordered,

display: “Your checkbook has been ordered”

Main success scenario 1 – The user enters checkbook

2 – Send the order

Alternate flow User already has a checkbook order pending, display:

“You already have a checkbook order pending”

Adrien Poupa TP040869 Object Oriented Methods with UML

5

Use case 3 Order a credit card

Pre-condition User is logged in

Post-condition 1 – The user enters credit card

2 – Send the order

Main success scenario Send the credit card, display “Your credit card has been

sent”

Alternate flow User already has a credit card

Use case 4 Change password

Pre-condition User is logged in

Post-condition Inform the user his password has been changed

Main success scenario 1 – The user enters password

2 – The user is asked to enter his new password twice

3 – Change user’s password, display “Your password

has been changed”

Alternate flow 1 – Password is invalid (too short)

2 – Password is invalid (same as username)

Use case 5 Request a SWIFT/BIC

Pre-condition User is logged in

Post-condition 1 – The user enters SWIFT

2 – Inform the user of his SWIFT and BIC credentials

Main success scenario Display the SWIFT and BIC number

Adrien Poupa TP040869 Object Oriented Methods with UML

6

Class diagram

Adrien Poupa TP040869 Object Oriented Methods with UML

7

Sequence diagrams

Consultation of the expense history

Alternate flow 1

3
4

Adrien Poupa TP040869 Object Oriented Methods with UML

8

Order a credit card

Order a checkbook

3 4

Adrien Poupa TP040869 Object Oriented Methods with UML

9

Change password

Alternate flow 1

Alternate flow 2

Adrien Poupa TP040869 Object Oriented Methods with UML

10

Request a SWIFT/BIC

Adrien Poupa TP040869 Object Oriented Methods with UML

11

Activity diagrams

Consultation of the expense history

Adrien Poupa TP040869 Object Oriented Methods with UML

12

Order a checkbook or a credit card

Adrien Poupa TP040869 Object Oriented Methods with UML

13

Request SWIFT/BIC

Adrien Poupa TP040869 Object Oriented Methods with UML

14

Change password

Adrien Poupa TP040869 Object Oriented Methods with UML

15

Implementation

Consultation of the expense history

The user can consult his expenses from the main menu. He selects the correct option

(number 5) and a query is run in order to get the IDs of the accounts he owns. For every

account, using a loop, a new instance of each account is created and the appropriate

function is called (see appendix).

This function, called ConsultHistory, consists of another query to the transactions

table in order to get all the expenses (transactions IDs) for the given account. Once all the

transactions IDs are entered into a set of ints, a new loop is run for each transaction,

allowing it to be displayed properly for the user.

Order a checkbook or a credit card

To order a checkbook or a credit card, one has to select the proper option in the

menu (numbers 6 and 7). Once it is done, the list if his accounts is displayed using the

getBankAccounts function from the Client class.

As for the previous use case, it uses a query to select the accounts owned by the user

from its ID and a loop to show each of them. Then, one can enter the ID of the bank account

he or she wants to order a checkbook or a credit card to. If the ID is invalid (ie: he does not

own the account or the account does not exist) an error message is displayed and he has to

enter a proper ID. This is done comparing the ID he entered to the IDs fetched from the

database and stored in a set of ints. When the ID is correct, the function returns a reference

to the account the user has chosen.

Then, a new Order object is instantiated. Using setters, the current user (client) and

the bank account he has chosen are linked to it. Finally, the OrderCheckbook (or

OrderCreditCard) function is called from this new object and does the following: it queries

the database to make sure an order is not already pending for the given user; all the

attributes for the order are correctly filled (date of the day, type of the order, etc) and a new

notification to the advisor informing him of the order is entered.

Finally, the user is prompted a message telling him his order has been entered into

the database.

Adrien Poupa TP040869 Object Oriented Methods with UML

16

Change password

To change his password, the user has to be logged in. He has to select the “Change

password” option in the menu and is prompted to enter its new password. Once the

password is entered in the console, the setPassword function from the User class is called.

If the password entered by the user is shorter than 8 characters, an error message is

displayed. If the password entered by the user is similar to his name or surname, another

error message is displayed as well.

If the password is valid, it is hashed using the SHA256 class. The resulting hash is

then inserted into the database, and the user can login using his new password right away.

Request a SWIFT/BIC

This feature is accessible through the “Consult bank account” option in the main

menu. When the user selects this option, a list of his bank accounts is displayed, including

obviously the SWIFT and BIC information. In order to display them, the getBankAccounts

function from the Client class is called, querying the database to get the account(s) of a

specific user.

-- Account's list of Poupa Adrien --

 ID | SWIFT | BIC

----|-------------------|--------------

6 frAQBc8Wsa1 xVPfvJcr

After a short display of the accounts is displayed, the user is offered to see the details

of one account in particular by entering its ID. If the ID is invalid (ie: the given account

does not exist) an error message is displayed and he has to enter a proper ID. This is done

comparing the ID he entered to the IDs fetched from the database and stored in a set of

ints. When the ID is correct, it displays further information about the account selected such

as the amount of money available.

Adrien Poupa TP040869 Object Oriented Methods with UML

17

Appraisal

Database

In order to store the information for multiple sessions, we have chosen to use a

database, SQLite. It is simple and uses a flat file in order to store the data. I have decided

to use the BaseModel class to query the database; it is a class that Timothée Barbot and I

have written in December for a common C++ project at Efrei, hence it is not plagiarism if

we use the same codebase. It is written on top of SQLiteCPP, a library used as a mapper

for the official C library provided by SQLite. Same goes for the Date and Address class

which were written at this moment.

This class allows to get an entity by its ID, to run a SELECT query using WHERE

clauses or not, to save an entity using INSERT INTO queries and remove an element with

DELETE. The arguments taken by these functions are the ID request, or more often the

fields to SELECT or the WHERE conditions.

The select method returns a map<int, map<string, string>>. A set of result looks

like:

map<0, map<id, 1>>

map<1, map<id, 2>>

The save function inserts or update a result depending on the ID of the instance: 0

in case of insertion, the actual ID if it needs to be updated. It takes a map<string,

vector<string>> as argument, like multiple lines of {"id", {to_string(_id), "int"}}. The first

element is the name of the field, the second its value and the last one its type, int or string.

Since all results must be passed as a string, the integers have to be converted using

to_string.

To create an instance from an ID, a SELECT query is made with the function

getById, which returns a map<string, string>. Then, in each class, the constructor taking

only an ID can use the map to create the instance, while taking care of casting results if

needed, since all of them are strings when they extracted from the database using stoi

(string to integer) function.

map<string, string> data = BaseModel::getById(_dbTable, id);

_isAdmin = stoi(data["isadmin"]);

Finally, the remove function is the simplest since it only needs the table and the ID

to be deleted.

Adrien Poupa TP040869 Object Oriented Methods with UML

18

Hashing

 Having created websites before, I know how important it is to encrypt users’

password into database and not to store them in plain text in the unlikely event of a hacking.

In order to do so, I used a class I found to encrypt a string using the SHA256 algorithm. As

a result, a simple word results in the following hash:

9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c15b0f00a08

Notifications

 While this was not planned at the beginning, I felt like I should add a feature to

display notifications to the user or the advisor connecting. Otherwise, how could he know

quickly who contacted him or her and what the message was? How could he know if his

or her loan application was approved? To do so, I created a new class named Notification

and a new table to store the notifications. Each notification only has a small number of

information: an ID, the message, who it is addressed to and if it has already been read.

When a user connects, a notification may pop up like this:

##############################

--- New Notifications --- #

##############################

1. Your loan inquiry for RM5000 has been approved

After the notification has been displayed once, it is marked as read in the database.

Encapsulation

All the attributes are either protected or private, hence a good encapsulation. Of

course, accessors (setters and getters) are available to modify and consult those attributes

easily.

Overloading

 The large majorities of objects have their cin and cout methods overloaded, allowing

an elegant syntactic sugar when one has to create or display such an object by doing

cin >> objectNameToCreate; or cout << objectNameToDisplay;

Adrien Poupa TP040869 Object Oriented Methods with UML

19

Singleton Pattern

The Singleton pattern is used in order to launch the application in a convenient and

reliable way. Indeed, this prevents the SQlite file to be corrupted with concurrent access.

User interaction class: Bank

 The Bank class is used to interact between the user and the classes not accessible to

him directly. It handles the menus, the selections and the login/logout part.

Users and inheritance

 Last but not least, the users and their inheritance. The User class is abstract since

it has a virtual function. It is not instantiable, and has three children: Administrator, Advisor

and Client. This is very convenient because it allows to do operations such as get an ID for

a User entity without knowing if the actual object is an Administrator, an Advisor or a

Client

Criticism

 We did not include polymorphism as we thought we would, mainly because we did

not anticipate that our functions would be tight with each other. Clearly, we lacked time

and efficiency to include polymorphism properly without making it pointless.

Another point that we could have improved is the menu number: right now, numbers

are not following each other, not providing a smooth user experience.

Finally, we should have added an option to cancel any operation, but we realized it

would have been a nice feature too late in the development.

Adrien Poupa TP040869 Object Oriented Methods with UML

20

Appendix

Instructions of installation

The banking system is easy to install. All you need to do is install a C++ compiler

that is compatible with C++11 and make sure the database file (bank.db3) is located at the

root of the project and is accessible for reading and writing to the user launching the

program (more precisely the compiler).

The default passwords are “123” or “test”.

Of course, you can run the executable file for an easier installation. Make sure that

the database file is located at the same level than the executable file and double click

banking-system.exe. You are good to go.

Adrien Poupa TP040869 Object Oriented Methods with UML

21

Code

BaseModel.cpp, used to query the database

/**

 * SQlite mapper

 * Adrien Poupa & Timothée Barbot

 * December 2015

 */

#include "BaseModel.h"

using namespace std;

map<string, string> BaseModel::getById(const string& table, const int& id)

{

 map<string, string> data = map<string, string>();

 try

 {

 SQLite::Database db("bank.db3");

 SQLite::Statement query(db, "SELECT * FROM " + table + " WHERE

id=?");

 query.bind(1, id);

 int resultCount = 0;

 while (query.executeStep())

 {

 resultCount++;

 for(int i = 0; i < query.getColumnCount(); i ++)

 {

 data.insert({query.getColumnName(i),

query.getColumn(i).getText()});

 }

 }

 return data;

 } catch (exception& e) {

 cout << "exception: " << e.what() << endl;

 return data;

 }

}

map<int, map<string, string>> BaseModel::select(const string& table, const

string& fields, const string& where)

{

 map<int, map<string, string>> data = map<int, map<string, string>>();

 try

 {

 SQLite::Database db("bank.db3");

Adrien Poupa TP040869 Object Oriented Methods with UML

22

 SQLite::Statement query(db, "SELECT " + fields + " FROM " + table +

(where.length() != 0 ? " WHERE " + where : ""));

 int resultCount = 0;

 while (query.executeStep())

 {

 resultCount++;

 for(int i = 0; i < query.getColumnCount(); i ++)

 {

 data[resultCount].insert({query.getColumnName(i),

query.getColumn(i).getText()});

 }

 }

 return data;

 } catch (exception& e) {

 cout << "exception: " << e.what() << endl;

 return data;

 }

}

int BaseModel::save(const string& table, map<string, vector<string>> data)

{

 /*

 data : {

 {"_id", {"15", "int"}},

 {"attr1", {"jean", "string"}},

 ...

 }

 */

 // Update

 if (stoi(data["id"][0]) != 0) {

 try

 {

 SQLite::Database db("bank.db3",

SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);

 string queryString = "UPDATE " + table + " SET ";

 for(auto const& elem : data)

 {

 if (elem.first != "id")

 {

 queryString += elem.first.c_str();

 queryString += "=?, ";

 }

 }

 queryString = queryString.substr(0, queryString.size() - 2);

 queryString += "WHERE id=" + data["id"][0] + ";";

 // queryString : UPDATE table SET attr1=?, attr2=?, attr3=? WHERE

id=?

Adrien Poupa TP040869 Object Oriented Methods with UML

23

 SQLite::Statement query(db, queryString);

 int n = 1;

 for(auto const& elem : data)

 {

 if (elem.first != "id")

 {

 if (elem.second[1] == "string")

 {

 query.bind(n, elem.second[0]);

 }

 else if (elem.second[1] == "int")

 {

 query.bind(n, stoi(elem.second[0]));

 }

 n++;

 }

 }

 // queryString: UPDATE table SET attr1=val1, attr2=val2,

attr3=val3 WHERE id=_idval

 query.exec();

 return true;

 }

 catch (exception& e)

 {

 cout << "SQLite exception: " << e.what() << endl;

 return false;

 }

 }

 // Insert

 else

 {

 try

 {

 SQLite::Database db("bank.db3",

SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);

 string queryString = "INSERT OR IGNORE INTO " + table + "(";

 for(auto const& elem: data)

 {

 if (elem.first != "id")

 {

 queryString += elem.first + ", ";

 }

 }

 queryString = queryString.substr(0, queryString.size() - 2);

 queryString += ") ";

 queryString += "VALUES(";

Adrien Poupa TP040869 Object Oriented Methods with UML

24

 for(auto const& elem: data)

 {

 if (elem.first != "id")

 {

 queryString += "?, ";

 }

 }

 queryString = queryString.substr(0, queryString.size()-2);

 queryString += ");";

 // Insert query

 SQLite::Statement query(db, queryString);

 int n = 1;

 for(auto const& elem : data)

 {

 if (elem.first != "id")

 {

 if (elem.second[1] == "string")

 {

 query.bind(n, elem.second[0]);

 }

 else if (elem.second[1] == "int")

 {

 query.bind(n, stoi(elem.second[0]));

 }

 n++;

 }

 }

 query.exec();

 // Update current ID

 int tmp = db.execAndGet("SELECT last_insert_rowid();");

 return tmp;

 }

 catch (exception& e)

 {

 cout << "SQLite exception: " << e.what() << endl;

 return false;

 }

 }

}

int BaseModel::getCount(const string& table, string filter){

 if (filter != ""){

 filter = " WHERE " + filter;

 }

 try

 {

 SQLite::Database db("bank.db3");

 SQLite::Statement query(db, "SELECT count(*) FROM " + table +

filter);

Adrien Poupa TP040869 Object Oriented Methods with UML

25

 while (query.executeStep())

 {

 return query.getColumn(0);

 }

 } catch (exception& e) {

 cout << "exception: " << e.what() << endl;

 }

 return 0;

}

bool BaseModel::remove(const string& table, const int& id)

{

 // We cannot delete a non-existing field

 if (id == 0)

 {

 return false;

 }

 try

 {

 SQLite::Database db("bank.db3",

SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);

 // Delete query

 SQLite::Statement query(db, "DELETE FROM " + table + " WHERE

id=?");

 query.bind(1, (int) id);

 query.exec();

 }

 catch (exception& e)

 {

 cout << "SQLite exception: " << e.what() << endl;

 return false;

 }

 return true;

}

Adrien Poupa TP040869 Object Oriented Methods with UML

26

Consultation of the expense history

Bank.cpp, call to the appropriate function

// Expense history

case 5: {

 Client client = Client(_currentUser->getId());

 set<int> accounts = client.getAccountsIds();

 for(auto i : accounts) {

 BankAccount* account = new BankAccount(i);

 account->ConsultHistory();

 }

 break;

}

Functions used to display the expense history, Client.cpp, BankAccount.cpp and

Transaction.cpp

set<int> Client::getAccountsIds() {

 map<int, map<string, string>> bankAccount =

BaseModel::select("bank_account", "id", "id_user = " + to_string(_id));

 int totalAccount = (int)bankAccount.size();

 set<int> AccountIds = set<int>();

 for (int i = 1; i != totalAccount + 1; i++)

 {

 AccountIds.insert(stoi(bankAccount[i]["id"]));

 }

 return AccountIds;

}

BankAccount::BankAccount(const int id) // Get a User from an ID provided by

DB

{

 map<string, string> data = BaseModel::getById(_dbTable, id);

 if (!data.empty()) {

 _id = (unsigned) id;

 _swift = data["SWIFT"];

 _bic = data["BIC"];

 _balance = stoi(data["balance"]);

 _idUser = (unsigned) stoi(data["id_user"]);

 }

 else {

 throw invalid_argument("The id of the bank account does not exist.");

 }

}

Adrien Poupa TP040869 Object Oriented Methods with UML

27

void BankAccount::ConsultHistory() {

 cout << "Expenses for account: " << getId() << endl;

 set<int> expenses = getExpenses();

 for (auto j : expenses) {

 Transaction* transaction = new Transaction((unsigned) j);

 cout << *transaction << endl;

 }

}

Transaction::Transaction(const unsigned int id) {

 map<string, string> data = BaseModel::getById(_dbTable, id);

 if (!data.empty())

 {

 _id = id;

 _account = BankAccount(stoi(data["account"]));

 _date = Date(data["date"]);

 _amount = stoi(data["amount"]);

 _description = data["description"];

 }

 else

 {

 throw invalid_argument("Please enter a valid ID");

 }

}

Adrien Poupa TP040869 Object Oriented Methods with UML

28

Request SWIFT/BIC

Function used to display the SWIFT/BIC, Client.cpp

BankAccount* Client::getBankAccounts() {

 map<int, map<string, string>> bankAccount =

BaseModel::select("bank_account", "id, swift, BIC, id_user, balance",

 "id_user =

" + to_string(getId()));

 int totalAccount = (int)bankAccount.size();

 int idToOpen;

 set<int> AccountIds = set<int>();

 bool correctId = false;

 do{

 cout << "---" <<

endl;

 cout << " -- Account's list of "<< getLastName() << " " <<

getFirstName() <<" --" << endl;

 cout << " ID | SWIFT | BIC " << endl;

 cout << "----|-------------------|--------------" << endl;

 for (int i = 1; i != totalAccount + 1; i++)

 {

 cout << bankAccount[i]["id"] << " " <<

bankAccount[i]["SWIFT"] << " " <<

 bankAccount[i]["BIC"] << endl;

 AccountIds.insert(stoi(bankAccount[i]["id"]));

 }

 cout << endl << "Bank account's id : " << endl;

 cin >> idToOpen;

 if(cin.fail())

 {

 cin.clear();

 cin.ignore(numeric_limits<streamsize>::max(), '\n');

 }

 else

 {

 correctId = AccountIds.find(idToOpen) != AccountIds.end();

 }

 if (!correctId)

 {

 cout << "Unknown ID ..." << endl;

 }

 } while(!correctId);

 BankAccount *bc = new BankAccount(idToOpen);

 cout << *bc << endl;

 return bc;

}

Adrien Poupa TP040869 Object Oriented Methods with UML

29

Order a checkbook

Call from Bank.cpp

// Order a checkbook

case 6: {

 Client client = Client(_currentUser->getId());

 cout << "Available accounts:" << endl;

 Client client2 = Client(_currentUser->getId());

 BankAccount* toOpen = client2.getBankAccounts();

 Order* order = new Order();

 order->setClient(client);

 order->setAccount(*toOpen);

 order->OrderCheckbook();

 cout << "Checkbook ordered" << endl;

 break;

}

OrderCheckbook function from Order.cpp

void Order::OrderCheckbook() {

 map<int, map<string, string>> orders = BaseModel::select("orders", "id",

 "user_id = " +

to_string(_user.getId()) + " AND sent = '0001-01-01'");

 int totalOrders = (int)orders.size();

 if (totalOrders > 0) {

 cout << "You already have an order pending" << endl;

 }

 else {

 Date* today = new Date();

 Date* sent = new Date(-1, -1, -1);

 this->setCreation(*today);

 this->setSent(*sent);

 this->setType(0);

 this->save();

 // Notify the advisor

 string notificationMessage = "New checkbook order from "

 + _user.getLastName() + " " +

_user.getFirstName();

 Notification* notification = new Notification(notificationMessage,

(unsigned) _user.getAdvisor());

 notification->save();

 }

}

To order a credit card, the code schema is almost the same.

Adrien Poupa TP040869 Object Oriented Methods with UML

30

Change password

Call from Bank.cpp

case 3:

 char newPassword[256];

 cout << "New password: " << endl;

 cin.ignore(1, '\n');

 cin.getline(newPassword, '\n');

 _currentUser->setPassword(newPassword);

 _currentUser->save();

 break;

setPassword function from User.cpp

void User::setPassword(const string password)

{

 if (password.length() < 8) {

 cout << "Password too short (must be 8 characters at least)" << endl;

 }

 else if (password == _firstName || password == _lastName) {

 cout << "Password same as username" << endl;

 }

 else {

 _password = sha256(password);

 }

}

Adrien Poupa TP040869 Object Oriented Methods with UML

31

Notification system

Notification.h

class Notification {

protected:

 unsigned int _id;

 std::string _message;

 unsigned int _userId;

 bool _read;

 static std::string _dbTable;

public:

 Notification();

 Notification(unsigned int id);

 Notification(std::string message, unsigned int userId);

 unsigned int getId();

 void setId(unsigned int id);

 std::string getMessage();

 void setMessage(std::string message);

 unsigned int getUserId();

 void setUserId(unsigned int userId);

 bool getRead();

 void setRead(bool read);

 bool save();

 bool remove();

 friend std::ostream& operator<< (std::ostream& stream, const

Notification& notification);

 friend std::istream& operator>> (std::istream& stream, Notification&

notification);

};

Adrien Poupa TP040869 Object Oriented Methods with UML

32

Notification.cpp

#include "Notification.h"

#include "BaseModel.h"

using namespace std;

string Notification::_dbTable = "notifications";

Notification::Notification() {

 _id = 0;

 _read = false;

}

Notification::Notification(unsigned int id) {

 map<string, string> data = BaseModel::getById(_dbTable, id);

 if (!data.empty())

 {

 _id = id;

 _message = data["message"];

 _userId = (unsigned) stoi(data["userid"]);

 _read = (bool) stoi(data["read"]);

 }

 else

 {

 throw invalid_argument("Please enter a valid ID");

 }

}

Notification::Notification(string message, unsigned int userId) :

_message(message), _userId(userId) {

 _id = 0;

}

unsigned int Notification::getId() {

 return _id;

}

void Notification::setId(unsigned int id) {

 _id = id;

}

std::string Notification::getMessage() {

 return _message;

}

void Notification::setMessage(std::string message) {

 _message = message;

}

unsigned int Notification::getUserId() {

 return _userId;

}

Adrien Poupa TP040869 Object Oriented Methods with UML

33

void Notification::setUserId(unsigned int userId) {

 _userId = userId;

}

bool Notification::getRead() {

 return _read;

}

void Notification::setRead(bool read) {

 _read = read;

}

bool Notification::save() {

 int res = BaseModel::save(_dbTable, {

 {"id", {to_string(_id), "int"}},

 {"message", {_message, "string"}},

 {"userid", {to_string(_userId), "int"}},

 {"read", {to_string((int) _read), "int"}},

 });

 if (_id == 0)

 {

 _id = res["id"];

 }

 return (bool) res;

}

bool Notification::remove() {

 return BaseModel::remove(_dbTable, _id);

}

std::ostream& operator<< (std::ostream& stream, const Notification&

notification) {

 stream << notification._message << endl;

 return stream;

}

std::istream& operator>> (std::istream& stream, Notification& notification) {

 cout << "Message:" << endl;

 stream.ignore(1, '\n');

 getline(stream, notification._message, '\n');

 return stream;

}

Adrien Poupa TP040869 Object Oriented Methods with UML

34

Database diagram

Adrien Poupa TP040869 Object Oriented Methods with UML

35

References

C++ sha256 function :: zedwood.com. 2016. C++ sha256 function :: zedwood.com. [ONLINE]

Available at: http://www.zedwood.com/article/cpp-sha256-function. [Accessed 24 May 2016].

GitHub. 2016. GitHub - AdrienPoupa/mediatheque-cpp: Projet Efrei C++. [ONLINE] Available

at: https://github.com/AdrienPoupa/mediatheque-cpp. [Accessed 24 May 2016].

GitHub. 2016. GitHub - SRombauts/SQLiteCpp: SQLiteC++ (SQLiteCpp) is a smart and easy to

use C++ SQLite3 wrapper.. [ONLINE] Available at: https://github.com/SRombauts/SQLiteCpp.

[Accessed 24 May 2016].

GitHub. 2016. GitHub - meganz/mingw-std-threads: Standard threads implementation currently

still missing on MinGW GCC on Windows. [ONLINE] Available at:

https://github.com/meganz/mingw-std-threads. [Accessed 24 May 2016].

http://www.zedwood.com/article/cpp-sha256-function
https://github.com/AdrienPoupa/mediatheque-cpp
https://github.com/SRombauts/SQLiteCpp
https://github.com/meganz/mingw-std-threads

Adrien Poupa TP040869 Object Oriented Methods with UML

36

Marking Scheme

Student Name (ID): ___________________________________ Total: _________ / 100%

 Fail Marginal Fail Pass Credit Distinction

Design

(40%)

0-15 16-19 20-25 26-29 30-40
 Minimal understanding

of program design

 Poor illustration of

program design using
UML

 Major / obvious errors /
omissions in UML

diagrams

 Incomplete design

missing major diagrams

 Design solution covers less

than half of the basic
requirements of the system

 Minimal to non-application
of object oriented concepts

in the design

 Some understanding of the

program design

 Design solution covers most of

the basic requirements of the
system

 Some errors / omissions in UML
diagrams

 Completed all the major UML
diagrams (Use Case, Activity and

Class) with missing some

diagrams

 Appropriate and basic object

oriented concepts applied in the

design.

 Good understanding of the

program design

 Design solution covers all the

basic requirements of the system

 Minor errors / omissions in UML

diagrams

 No missing UML diagrams

 Appropriate and advanced object
oriented concepts applied in the

design.

 Excellent understanding of the

program design

 Detailed design solution covers all

the requirements of the system

 No missing UML diagrams with

hardly any errors / omissions

 Appropriate and advanced object

oriented concepts applied in the
design.

 One suitable design patterns applied

Working

Prototype

(30%)

 0-11 12-14 15-19 20-22 23-30
 Poor solution with

minimal to non relations

with the scenario

 Unresolved compilation

errors or able to execute

with major errors

 The coding solution lacks

proper structure

 Little or no mapping
between design and solution

 Implemented less than half
of the basic requirements

identified in the design

 Implemented suitable data

structures/algorithms in the

solution with more errors

 Appropriate solution with
relations to the scenario

 Prototype – able to compile and
execute with some errors

 Implemented all of the basic

requirements identified in the

design (use case)

 Implemented most of the object
oriented concepts stated in the

design with good mapping
between design and solution.

 Implemented suitable data

structures/algorithms in the

solution with few errors

 Good solution with relations to
the scenario

 Prototype – able to compile and
execute with minor errors

 Implemented most of the

requirements identified in the

design

 Implemented most of the object
oriented concepts stated in the

design with
Good mapping between design

and solution

 Implemented suitable data
structures/algorithms in the

solution with no errors.

 Excellent solution with relations to
the scenario

 Prototype – able to compile and
execute with no error

 Implemented all the requirements

identified in the design

 Implemented all of the object
oriented concepts stated in the

design

 Excellent mapping between design
and solution

 Design pattern(s_ stated in the
design has been applied.

 Implemented suitable data
structures/algorithms in the solution

without errors and design fault.

Adrien Poupa TP040869 Object Oriented Methods with UML

37

 Fail Marginal Fail Pass Credit Distinction

Critical

Evaluation

and

Document

ation

(30%)

0 – 11 12-14 15 - 19 20-22 23-30
 Incomplete

documentation

submitted

 No appraisal of the
solution

 No referencing

 Bad structure and

presentation

 Brief justification on the
application of object

oriented concepts

 Missing major
components within the

document

 No or illogical

assumptions made

 Completed all the major
components within the

document

 Basic structure and
presentation

 Did some referencing,
which adhere to Harvard

Name Referencing but with

some errors

 Acceptable justification

done on object oriented
concepts applied.

 Brief appraisal done on the
solution

 Brief assumptions made

 Good structure, presentation and
standards

 No missing components within the

document

 Adhered to Harvard Name

Referencing standards but with minor
errors / omissions

 Good justification done on object
oriented concepts applied.

 Acceptable appraisal done on the
solution

 Acceptable justification of the design

pattern applied

 Suitable assumptions made

 Professional standards with
excellent structure and

presentation

 A complete documentation
submitted

 Adhered to Harvard Name
Referencing standards with no

errors / omissions

 Detailed justification done on
object oriented concepts

applied.

 Detailed appraisal done on the

solution

 Detailed justification on the

choice pattern applied in the

solution.

 Good assumptions made

Remarks:

__

__

